TEMA 1 Los LEDs y las barras

El Back Light con base a Barras de LEDs	1
Construcción interna de los Chips de LEDs.	2
Voltaje VF del diodo LED. Corriente IF del diodo LED	3
Excitando la barra de LEDs	4
Circuito driver para las barras de LEDs	5
Diagrama del Driver de LEDs para el UN32EH4000.	6
Circuito Protector de Sobrevoltaje. El Mosfet limitador de Corriente, Controlando	
la Corriente por los LEDs	
Como se Incrementa y Disminuye la Corriente por los LEDs. El Back Light	0
de dos (2) Canales	9
	10 11
_	13
Las barras de LEDs del UN46F5500AK. Como reducir la corriente por los LEDs	15
de las barras. Cálculos	15 16
	17
	18
Reemplazandolas lámparas CCFL en los viejos Televisores LCD de 15"	19
Reemplazandoras famparas CCFL en los viejos felevisores ECD de 15	17
TEMA 2	
Driver de LEDs Chinos y Coreanos	
Tipos de Driver de LEDs.	21
Diagrama del HYLED551iNT de 4K con OB2273C	22
Como reducir la corriente por los LEDs. Cálculos	23
Driver de LEDs tipo Push Pull. Diagrama empleado en el chassis TCL_50P1US	26
Voltaje del Driver para los LEDs. Como reducir la corriente por los LEDs al 70%	27
Diagrama del Driver en el TV LG 49LJ540T	28
Driver de LEDs tipo Boost o elevador de voltaje. Diagrama empleado en el	
HYLED3215iNT2 con el OB3350CP/bit3386 y el homólogo SN51D.	
Reduciendo la corriente al 70%. Limitación de corriente.	30
Driver tipo Boost de 4 canales con el MP3398A	31
Reducción de corriente, opciones 1, 2 y 3. Interviniendo el pin ISET	33
Driver de LEDs de 4 canales con el GB98AERN. Reduciendo la corriente al 70%	
interviniendo el pin ISET	36
Driver de LEDs con BD9423EFV y BD9483EFV, sin pin ISET 37, 38 y	39
Driver de LEDs para el TV LG 47LM6200, con el limitador de corriente	
AAT2430AISX y el UC2843B como conversor DC-DC tipo Boost 40, 41	y 4
Conversores DC-DC tipo BUCK	4
Driver de LEDs tipo Buck empleando el IC LC5910 en el TV LG 43LH590D	4
Arranque forzado del circuito Driver de LEDs empleando el Jig.	
3	5-4
Reduciendo la corriente al 70%. Diagrama del driver en el TV LG 49LJ540T	
Analizando el Driver del TV SAMSUNG 4 K UN55MU6500	48
Diagrama del Driver UN55MU6500. Reduciendo la corriente al 70%	9-50

TEMA 3 La TCON

Diagrama Básico de una TCON. Circuito Corrector Gamma.	52
Conversores DC-DC.	53
Diagrama del conversor DC-DC MAX17126/126A.	54
El Driver de exploración y registro de desplazamiento (Shift Register o SR)	
MAX17121. Voltajes aplicados al MAX17121	55
Señales de entrada aplicadas al registro de desplazamiento.	56
Otro Circuito integrado Driver de exploración; SM4151 y RT6906B	57
Fallas ocasionadas por los voltajes entregados por los conversores DC-DC	58
TEMA 4	
Probando y Reemplazando las Pantallas LCD	
Duchanda una mantalla CAMSUNIC y la TCON amplanda fuenta da 121/2A	
Probando una pantalla SAMSUNG y la TCON empleando fuente de 12V/3A.	50 62
Realizando un JIG	39-03
	61 66
Pinado y Funciones del conector LVDS de 30 pines. Entrada /Salida	04-00
	67 60
FHD y HD de 51 y 30 pines para la TCON del UN40F5500	
Invirtiendo por Hardware la Trama VESA-JEIDA y de la imagen en la	09-70
TCON ST3151A04-1 incorporada a la Pantalla CHINA CHALLENGER.	71 72
Fotografía de los dos circuitos impresos Interfaces.	/1-/2
Probando una pantalla CHINA con una Main Board SAMSUNG. Montaje	
y proceso de Prueba. Pasos a seguir empleando el Circuito Impreso Interface de	7175
SAMSUNG a CHINO. ;; Precaución !!	
Cambiando la trama de JEIDA a VESA. Rotando por Software la imagen	70-77
Probando una pantalla SAMSUNG con una Main Board CHINA. Diagrama	
de Conexiones. Fotografía del Montaje. Empleo del Circuito Impreso Interface de CHINO a SAMSUNG.	70 00
Ingreso al modo de servicio del TV CHINO K-LED32HD. Proyecto ID.	
Probando la Pantalla SAMSUNG con Main Board CHINA SIMPLY de referencia	01
SYLED321T2i empleando dos circuitos Impresos Interfaces. Fotografía	
	02 05
del Montaje. Modo de servicio y Proyecto ID del SYLED321T2i	
Probando una pantalla SONY con una Main Board SAMSUNG. Pinado y	03-00
funciones de las salidas en la Main Board SONY FHD/HD y su ingreso a la	
, ,	07 00
TCON SONY HD Pinado y funciones de las salidas en la Main Board SAMSUNG FHD/HD.	07-00
•	90 00
Ingreso a la TCON SONY HD. Fotografía del Montaje	09-90
SAMSUNG HD. Consideraciones generales	91
<u> </u>	
Foto montaje para la Prueba de pantalla panasonic con Main Board Samsung	92
Pinado y funciones de salida en la Main Board Samsung FHD/HD e Ingreso	02
a la TCON de la Pantalla Panasonic HD TH-L400A y TC-32A400	93
Ingreso a la TCON LG 42LB550T.	94
Probando la Pantalla de los Televisores LG 42LW5700 y 421LW4500-DA con la	94
	05 06
Main Board del Televisor LG 39LB650T. Fotografía del Montaje	フン-90

TEMA 5 Adaptando Main Boards FHD a HD y Viceversa Entre las Marcas SAMSUNG y LG

Pinado de salida de la Main Board SAMSUNG FHD/HD UN40F5500AK.	
Ingreso a la TCON.	98
Localización de los resistores FHD/HD de la Main Board UN40F5500.	
Observacion sobre esta Main Board.	. 99-100
Localización de los resistores FHD/HD de la Main Board UN32EH4000	101
Localización de los resistores FHD/HD de la Main Board UN32FH4005	102
Localización de los resistores FHD/HD de la Main Board UN32J4000	103
Localización de los resistores FHD/HD de la Main Board UN32J4300	104
Localización de los resistores FHD/HD de la Main Board UN40J5200	105
Localización de los resistores FHD/HD de la Main Board UN40K5100	106
Localización de los resistores FHD/HD de la Main Board UN32C4000	107
Localización de los resistores FHD/HD de la Main Board LG 32LK330	108
Localización de los resistores FHD/HD de la Main Board LG 32LB561D	109
Localización de los resistores FHD/HD de la Main Board LG 42LB620T	110
Localización de los resistores FHD/HD de la Main Board LG 42LB550T	111
Localización de los resistores FHD/HD de la Main Board LG 42LN5700	112
Localización de los resistores FHD/HD de la Main Board LG 32LS3400	113
Localización de los resistores FHD/HD de la Main Board LG 32LE5300	114
TEMA 6	
Reparación de Pantallas y Fallas	
Comentadas	
Comentadas	
Dánido intro duscián. Dio cu estiman de la falla en la Dantella I CD	115
Rápida introducción. Diagnosticando la falla en la Pantalla LCD.	
Descartando problemas en la Pantalla, en la Main Board y en la TCON	
Falla 1. SAMSUNG UN32EH4000AK. Descartando la Main Board	
Falla 2. SAMSUNG UN40F5500AK. Conclusión sobre la Falla 2	
Falla 3. SAMSUNG UN40H4200AK. Falla 4. CHALLENGER LD40B28.	
Falle 5. AOC LE50D3350.	
Falla 6. SAMSUNG LN32C400E4.	
Falla 7. AOC LE32W234DL.	
Falla 8. PHILIPS 40PFL4708/F8. **Continúa en la página siguiente	123
TTU OHIHHIA EH IA DAØINA SIØHIENIE	

Continuación 6 Reparación de Pantallas y Fallas Comentadas

**Viene de la pagina anterior
Falla 9. LG 42LW5700
Falla 10. CHALLENGER LED32L31HD
Falla 11. SAMSUNG - SONY
Principio de Manejo de la Pantalla LCD. Trama de 8 y 10 Bits 127-130
Reparando las Pantallas por el Método del Corte
Falla 12. Reparando la pantalla del Televisor SONY KLV-32BX300
Pasos a seguir para el corte de las Pistas
Falle 13. Corrección de la falla en el SONY KLV-32L500A
Falla 14. Corrección de la falla en el SAMSUNG UN32EH4000. Proceso de Corte. 136
Falla 15. SONY KDL 40BX427. Corte de las señales CKV y KVB
Falla 16 y 17 SONY KDL 46S5100 y LG 42LH30. Reparación mediante el
Corte ó Supresión de los COFs
FALLA 18. Despliegue defectuoso en el Televisor LG 32LD5700 139-141
FALLA 19. Televisor LN32B450. Está encendido y lo apagamos. Al encen-
derlo de nuevo se escucha el audio y el cambio de canales, pero la pantalla per-
manece oscura. 142-154
Reparando Pantallas por el Método del Bypass

TEMA 7

Reemplazando Pantallas y Main Boards FHD entre las Marcas LG y SAMSUNG. Como Convertir una Main Board CHINA de HD a FHD y Viceversa.

Acoplando una Main Board LG FHD a una Pantalla SAMSUNG FHD. Circuito	
Impreso de la Interface FHD de LG a SAMSUNG	143
Conexiones de Salida de la Main Board LG y su ingreso a la TCON SAMSUNG	. 144
Salidas Directas y Reverse de la Main Board LG. Problemas de Acople	. 145
Solución por trama no compatible	. 146
Acoplando una Main Board SAMSUNG FHD a una Pantalla LG FHD. Proble-	
mas de acoplamiento. Circuito Impreso de la Interface FHD de SAMSUNG a LG.	. 147
Conexiones de Salida de la Main Board LG y su ingreso a la TCON SAMSUNG.	148
Convirtiendo una Main Board CHINA de FHD a HD y viceversa,	
de HD a FHD	7-149
Proyecto ID para el Televisor CHALLENGER LED40T15T2	150
Problemas durante el cambio de proyectos. Tablas ID para los modelos CHA-	
LLENGER LED32D27 y KALLEY K-LEDHDT2. Tabla Prototipo 15	1-152
Tabla del Proyecto ID para el LED40T15T2.	. 153
Continuación de la falla 7. Reparación de Pantallas por el método del Bypass	. 154

ANEXO FINAL.

Circuito de encendido del UN55MU6500. Driver de LEDs tipo Buck,
SAMSUNG UN49NU7300. Reducción de la corriente al 70%
Diagrama del Driver tipo Buck UN55NU7300. Driver tipo Boost con OB3362VP,
chassis MST6M182VG-T9C y similares Chinos. Interviniendo el pin ISET 156-157
Diagrama del Driver tipo Boost con el MAP3202S1RH el TV LG 32LN5100 158
Diagrama del Driver tipo Boost con el MP3378E. Interviniendo el pin ISET
Conceptos básicos sobre modulación por ancho de pulso o PWM
Conversores DC-DC en la Main Board-Tcon de 4K UN49MU6300- Modo Standby,
Modo encendido, voltajes de referencia, Main Board-Tcon UN49MU6300 161 a 163
Polarización de la Tcon y la pantalla. Voltajes de referencia para la pantalla 164
Pinado y funciones de las dos cintas con las señales V-by-One de 96 pistas 166
Arranque forzado de la Tcon. Proceso de arranque para el UN49MU6300 y similares
SAMSUNG de 4K
Tablas con las características del panel, series KU, MU y NU
Codificación de video V-by One 4K y LVDS HD y FHD 171 a 173
Codificación V-by-One en los LG de 4K y 8 carriles
Probando las pantallas SAMSUNG de 4K. Probando la Tcon y la
pantalla 40JU6300 con el Jig
Probando las pantallas SAMSUNG y LG de FHD de 2K con el Jig
Problemas en el acople de una Main board LG a una pantalla SAMSUNG
Trama no compatible. Imagen invertida verticalmente
Forzando el encendido de la fuente y del Driver del televisor Philips
39PFL3705/F8. Interviniendo el pin ADIM para reducir la corriente al 70% 183 a 186
Pasando la Main Board samsung UN40H5100 de FHD a HD y viceversa 187-188
Pinado de conectores LG para arranque forzado de Fuente y driver de LEDs
Cableado entre un conector de 24 pines con otro de 18 pines. Fuentes sin los 3,5V
Empleo del JIG de arranque. cableado entre un conector de 14 pines de una hilera y otro
de 12 pines de 2 x 6
Reduciendo la corriente en los Driver de LEDs SONY con BD9397EFV
Principio básico del comparador
Empleo de los comparadores en otros circuitos, el estabilizador electrónico de voltaje
Diagrama completo del driver HISENSE 50K200W tipo Push Pullchassis RSAG7.820.5687 200